
Angelvandte.org

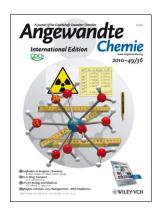
2010-49/36

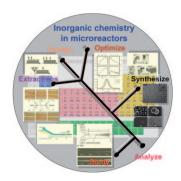
Microfluidics in Inorganic Chemistry

A. Abou-Hassan, V. Cabuil, and O. Sandre

PEG in Drug TransportU. S. Schubert et al.

MOFs for Biology and Medicine
R. E. Morris, C. Serre et al.

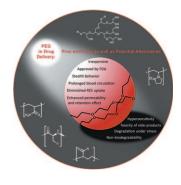

Highlights: Catalytic CO₂ Hydrogenation · RNA Interference

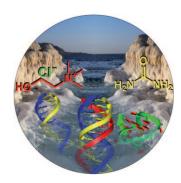


Cover Picture

Christos Apostolidis, Bernd Schimmelpfennig, Nicola Magnani, Patric Lindqvist-Reis,* Olaf Walter, Richard Sykora, Alfred Morgenstern, Eric Colineau, Roberto Caciuffo, Reinhardt Klenze, Richard G. Haire, Jean Rebizant, Frank Bruchertseifer, and Thomas Fanghänel

Easily prepared and highly soluble actinide(III) salts are of great interest as precursors for actinide complex chemistry. In their Communication on page 6343 ff., P. Lindqvist-Reis and co-workers report how $[An(H_2O)_0]^{3+}(CF_3SO_3)_3$ (An = U-Cm, Cf) can be obtained directly from aqueous solution, a remarkable result for the U^{III} and Np^{III} salts given their extremely oxidation-sensitive nature. They also discuss the use of these salts as models for hydrated An^{3+} ions in solution.




Microfluidics in Inorganic Chemistry

In their Review on page 6268 ff., A. Abou-Hassan, V. Cabuil, and O. Sandre describe the role that microreactors can play in understanding the phenomena of nucleation and growth and the optimization of inorganic reactions.

Drug Delivery

Today, poly(ethylene glycol) has found numerous applications in drug-transport systems. U. S. Schubert et al. give in their Review on page 6288 ff. a critical assessment of this important compound and introduce alternatives.

Deep-Eutectic Solvents

A 1:2 mixture of choline chloride and urea forms a eutectic system that is liquid at room temperature. In their Communication on page 6310 ff., N. V. Hud and coworkers demonstrate the ability of this water-free solvent to support several nucleic acid secondary structures.